## MATH 102:112, CLASS 13 (THURSDAY OCT 18)

(1) Calculate the derivatives.

$$
\frac{1}{3 x^{3}+2}
$$

$$
x \sqrt{4 x^{2}-1}
$$

(2) The level of pollution in a lake is dependent on the population of humans by the lake. Let $P(H)=H^{2}$ equal the amount of human-created pollution, where $H$ is the number of humans (in thousands). Regular census-taking yields the graph of $y=H(t)$ shown. ( $t$ in years)


We would like to understand how the pollution levels change with time.
(a) Calculate $\frac{d P}{d t}$ at $t=30$.
(b) Calculate $\frac{d P}{d t}$ at $t=10$.
(c) Calculate $\frac{d P}{d t}$ at $t=55$.
(3) A circular bacterial colony has radius $r(t)$ and area $A(t)$ (so that $\left.A(t)=\pi(r(t))^{2}\right)$. (a) Suppose that $r(t)$ grows at a constant rate of 2 . Calculate $\frac{d A}{d t}$ when $r=5$.
(b) Suppose instead that $A(t)$ grows at a constant rate of $20 \pi$. Calculate $\frac{d r}{d t}$ when $r=5$.
(4) (More optimization practice) An animal is deciding what proportion of its foodgathering time, $x$, it should allot between two different types of food (where $0 \leq x \leq 1$ ).
(a) Suppose there are two types of food, 1 and 2, and the nutrition gained from spending $x$ portion of time on each is $F_{1}(x)=x^{1 / 2}$ and $F_{2}(x)=N x$ for some positive constant $N$. What is the maximum amount of nutrition the animal can gain, and for what value of $x$ does this happen? Your answer will depend on $N$.
(b) Same question, but for $F_{1}(x)=x^{2}$ and $F_{2}(x)=N x$.

